Black garlic extract

Reference paper of black garlic extract blog

Allicin Pharm No Comments

Reference paper of black garlic extract blog

  1. Doré J., Blottière H. The influence of diet on the gut microbiota and its consequences for health. Curr. Opin. Biotechnol. 2015;32:195–199. doi: 10.1016/j.copbio.2015.01.002. [PubMed] [CrossRef] [Google Scholar]
  2. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation. 2016;133:187–225. doi: 10.1161/CIRCULATIONAHA.115.018585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  3. Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  4. Kaparapu J., Pragada P.M., Geddada M.N.R. Functional Foods Nutraceuticals.Springer; Berlin/Heidelberg, Germany: 2020. Fruits and Vegetables and its Nutritional Benefits; pp. 241–260. [Google Scholar]
  5. Del Rio-Celestino M., Font R. The health benefits of fruits and vegetables. Foods. 2020;9:369. doi: 10.3390/foods9030369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  6. Diretto G., Rubio-Moraga A., Argandoña J., Castillo P., Gómez-Gómez L., Ahrazem O. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules. 2017;22:1359. doi: 10.3390/molecules22081359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  7. Liyanagamage D., Jayasinghe S., Attanayake A.P., Karunaratne V. Medicinal plants in management of diabetes mellitus: An overview. Ceylon J. Sci. 2020;49:3–11. doi: 10.4038/cjs.v49i1.7700. [CrossRef] [Google Scholar]
  8. Bose S., Laha B., Banerjee S. Quantification of allicin by high performance liquid chromatography-ultraviolet analysis with effect of post-ultrasonic sound and microwave radiation on fresh garlic cloves. Pharmacogn. Mag. 2014;10:S288–S293. doi: 10.4103/0973-1296.133279. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  9. Qu Z., Mossine V.V., Cui J., Sun G.Y., Gu Z. Protective effects of AGE and its components on neuroinflammation and neurodegeneration. Neuromolecular Med. 2016;18:474–482. doi: 10.1007/s12017-016-8410-1. [PubMed] [CrossRef] [Google Scholar]
  10. Szychowski K., Rybczynska-Tkaczyk K., Gawel-Beben K., Swieca M., Karas M., Jakubczyk A., Matysiak-Kucharek M., Binduga U., Gminski J. Characterization of active compounds of different garlic (Allium sativumL.) cultivars. Pol. J. Food Nutr. Sci. 2018;68:73–81. doi: 10.1515/pjfns-2017-0005. [CrossRef] [Google Scholar]
  11. Ryu J.H., Kang D. Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: A review. Molecules. 2017;22:919. doi: 10.3390/molecules22060919. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  12. Tanamai J., Veeramanomai S., Indrakosas N., Indrakosas N. The efficacy of cholesterol-lowering action and side effects of garlic enteric coated tablets in man. J. Med. Assoc. Thail. 2004;87:1156–1161. [PubMed] [Google Scholar]
  13. Mathew B.C., Biju R.S. Neuroprotective effects of garlic a review. Libyan J. Med. 2008;3:23–33. [PMC free article] [PubMed] [Google Scholar]
  14. Santos F.C.C., Carvalho N.U.M. Tintura alcoólica de alho (Allium sativum) sobre endoparasitas gastrintestinais de ovinos. Ciência Anim. Bras. 2014;15:115–118. doi: 10.5216/cab.v15i1.23284. [CrossRef] [Google Scholar]
  15. Li M., Yan Y., Yu Q., Deng Y., Wu D., Wang Y., Ge Y., Li S., Zhao J. Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 Macrophages. J. Food Sci. 2017;82:765–771. doi: 10.1111/1750-3841.13589. [PubMed] [CrossRef] [Google Scholar]
  16. Bae S.E., Cho S.Y., Won Y.D., Lee S.H., Park H.J. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT-Food Sci. Technol. 2015;55:397–402. doi: 10.1016/j.lwt.2013.05.006. [CrossRef] [Google Scholar]
  17. Kimura S., Tung Y.-C., Pan M.-H., Su N.-W., Lai Y.-J., Cheng K.-C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal. 2017;25:62–70. doi: 10.1016/j.jfda.2016.11.003. [PubMed] [CrossRef] [Google Scholar]
  18. Martinez-Casas L., Lage-Yusty M., López-Hernández J. Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. J. Agric. Food Chem. 2017;65:10804–10811. doi: 10.1021/acs.jafc.7b04423. [PubMed] [CrossRef] [Google Scholar]
  19. Amagase H., Petesch B.L., Matsuura H., Kasuga S., Itakura Y. Intake of garlic and its bioactive components. J. Nutr. 2001;131:955S–962S. doi: 10.1093/jn/131.3.955S. [PubMed] [CrossRef] [Google Scholar]
  20. Jeong Y., Ryu J., Shin J., Kang M., Kang J., Han J., Kang D. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules. 2016;21:430. doi: 10.3390/molecules21040430. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  21. Tak H.-M., Kang M.-J., Kim K.M., Kang D., Han S., Shin J.-H. Anti-inflammatory activities of fermented black garlic. J. Korean Soc. Food Sci. Nutr. 2014;43:1527–1534. doi: 10.3746/jkfn.2014.43.10.1527. [CrossRef] [Google Scholar]
  22. Kim D., Kang M.J., Hong S.S., Choi Y.-H., Shin J.H. Antiinflammatory effects of functionally active compounds isolated from aged black garlic. Phyther. Res. 2017;31:53–61. doi: 10.1002/ptr.5726. [PubMed] [CrossRef] [Google Scholar]
  23. Zhang J., Jilg H. Antioxidant and anti-inflammatory activities of black garlic extracts. J. Food Saf. Qual. 2017;8:2635–2643. [Google Scholar]
  24. Wu J., Liu Y., Dou Z., Wu T., Liu R., Sui W., Jin Y., Zhang M. Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice. Food Funct. 2020;11:9585–9598. doi: 10.1039/D0FO02379E. [PubMed] [CrossRef] [Google Scholar]
  25. Chang W., Shiau D., Cheng M., Tseng C., Chen C., Wu M., Hsu C. Black garlic ameliorates obesity induced by a high-fat diet in rats. J. Food Nutr. Res. 2017;5:736–741. doi: 10.12691/jfnr-5-10-3. [CrossRef] [Google Scholar]
  26. Chung S.Y., Han K.-H., Bae S.-H., Han S.H., Lee Y.K. Effects of the Fermented Black Garlic Extract on Lipid Metabolism and Hepatoprotection in Mice. Korean J. Food Nutr. 2020;33:17–26. [Google Scholar]
  27. Shin J., Lee C., Oh S., Yun J., Kang M., Han S., Park H., Jung J., Chung Y., Kang J. Hepatoprotective effect of aged black garlic extract in rodents. Toxicol. Res. 2014;30:49–54. doi: 10.5487/TR.2014.30.1.049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  28. Tsai J., Chen Y., Wu J., Cheng K., Lai P., Liu K., Lin Y., Huang Y., Hsieh C. Extracts from fermented black garlic exhibit a hepatoprotective effect on acute hepatic injury. Molecules. 2019;24:1112. doi: 10.3390/molecules24061112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  29. Kim I., Kim J., Hwang Y., Hwang K., Om A., Kim J., Cho K. The beneficial effects of aged black garlic extract on obesity and hyperlipidemia in rats fed a high-fat diet. J. Med. Plants Res. 2011;5:3159–3168. [Google Scholar]
  30. Seo Y.-J., Gweon O.-C., Im J.-E., Lee Y.-M., Kang M.-J., Kim J.-I. Effect of garlic and aged black garlic on hyperglycemia and dyslipidemia in animal model of type 2 diabetes mellitus. Prev. Nutr. Food Sci. 2009;14:1–7. doi: 10.3746/jfn.2009.14.1.001. [CrossRef] [Google Scholar]
  31. Alkreathy H.M. Potential Anticancer Effects of Aged Garlic Extract and its Water-soluble Organosulfur Compounds. J. Pharm. Res. Int. 2020;32:108–121. doi: 10.9734/jpri/2020/v32i1230568. [CrossRef] [Google Scholar]
  32. Dong M., Yang G., Liu H., Liu X., Lin S., Sun D., Wang Y. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway. Biomed. Rep. 2014;2:250–254. doi: 10.3892/br.2014.226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  33. Wang X., Jiao F., Wang Q., Qang J., Yang K., Hu R., Liu H., Wang H., Wang Y. Aged black garlic extract induces inhibition of gastric cancer cell growth in vitro and in vivo. Mol. Med. Rep. 2012;5:66–72. doi: 10.3892/mmr.2011.588. [PubMed] [CrossRef] [Google Scholar]
  34. Yoo J.-M., Sok D.-E., Kim M.R. Anti-allergic action of aged black garlic extract in RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice. J. Med. Food. 2014;17:92–102. doi: 10.1089/jmf.2013.2927. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  35. Kim J.H., Nam S.H., Rico C.W., Kang M.Y. A comparative study on the antioxidative and anti-allergic activities of fresh and aged black garlic extracts. Int. J. Food Sci. Technol. 2012;47:1176–1182. doi: 10.1111/j.1365-2621.2012.02957.x. [CrossRef] [Google Scholar]
  36. Venkatesh Y.P. Immunology.Elsevier; Amsterdam, The Netherlands: 2018. Immunomodulatory attributes of aged garlic extract and its components; pp. 203–224. [Google Scholar]
  37. Garcia-Villalón A.L., Amor S., Monge L., Fernández N., Prodanov M., Muñoz M., Inarejos-Garcíac A.M., Granado M. In vitro studies of an aged black garlic extract enriched in S-allylcysteine and polyphenols with cardioprotective effects. J. Funct. Foods. 2016;27:189–200. doi: 10.1016/j.jff.2016.08.062. [CrossRef] [Google Scholar]
  38. Zhang X., Shi Y., Wang L., Li X., Zhang S., Wang X., Jin M., Hsiao C.-D., Lin H., Han L., et al. Metabolomics for Biomarker Discovery in Fermented Black Garlic and Potential Bioprotective Responses against Cardiovascular Diseases. J. Agric. Food Chem. 2019;67:12191–12198. doi: 10.1021/acs.jafc.9b04073. [PubMed] [CrossRef] [Google Scholar]
  39. Song H., Cui J., Mossine V.V., Greenlief C.M., Fritsche K., Sun G.Y., Gu Z. Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration. Exp. Ther. Med. 2020;19:1554–1559. doi: 10.3892/etm.2019.8389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  40. Choi D.-J., Lee S.-J., Kang M.-J., Cho H.-S., Sung N.-J., Shin J.-H. Physicochemical characteristics of black garlic (Allium sativumL.) J. Korean Soc. Food Sci. Nutr. 2008;37:465–471. doi: 10.3746/jkfn.2008.37.4.465. [CrossRef] [Google Scholar]
  41. Zhang X., Li N., Lu X., Liu P., Qiao X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2016;96:2366–2372. doi: 10.1002/jsfa.7351. [PubMed] [CrossRef] [Google Scholar]
  42. Sun Y.-E., Wang W. Changes in nutritional and bio-functional compounds and antioxidant capacity during black garlic processing. J. Food Sci. Technol. 2018;55:479–488. doi: 10.1007/s13197-017-2956-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  43. Shin J.-H., Choi D.-J., Lee S.-J., Cha J.-Y., Kim J.-G., Sung N.-J. Changes of physicochemical components and antioxidant activity of garlic during its processing. J. Life Sci. 2008;18:1123–1131. doi: 10.5352/JLS.2008.18.8.1123. [CrossRef] [Google Scholar]
  44. Toledano-Medina M.A., Pérez-Aparicio J., Moreno-Rojas R., Merinas-Amo T. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chem. 2016;199:135–139. doi: 10.1016/j.foodchem.2015.11.128. [PubMed] [CrossRef] [Google Scholar]
  45. Wang D., Feng Y., Liu J., Yan J., Wang M., Sasaki J.-I., Lu C. Black garlic (Allium sativum) extracts enhance the immune system. Med. Aromat. Plant Sci. Biotechnol. 2010;4:37–40. [Google Scholar]
  46. Choi I.S., Cha H.S., Lee Y.S. Physicochemical and antioxidant properties of black garlic. Molecules. 2014;19:16811–16823. doi: 10.3390/molecules191016811. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  47. Lee H.-H., Kim I.-J., Kang S.-T., Kim Y.-H., Lee J.-O., Ryu C.-H. Development of black garlic Yakju and its antioxidant activity. Korean J. Food Sci. Technol. 2010;42:69–74. [Google Scholar]
  48. Andersen R., Sørensen A. An enzymatic method for the determination of fructans in foods and food products. Eur. Food Res. Technol. 1999;210:148–152. doi: 10.1007/s002170050552. [CrossRef] [Google Scholar]
  49. Upadhyay R.K. Nutritional and therapeutic potential of Allium vegetables. J Nutr Ther. 2017;6:18–37. doi: 10.6000/1929-5634.2017.06.01.3. [CrossRef] [Google Scholar]
  50. Cheong K.L., Yan F., Huang X. Enymologic characterization of garlic fructan exohydrolase. J. Food Biochem. 2012;36:248–253. doi: 10.1111/j.1745-4514.2010.00532.x. [CrossRef] [Google Scholar]
  51. Liang T., Wei F., Lu Y., Kodani Y., Nakada M., Miyakawa T., Tanokura M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015;63:683–691. doi: 10.1021/jf504836d. [PubMed] [CrossRef] [Google Scholar]
  52. Yuan H., Sun L., Chen M., Wang J. An analysis of the changes on intermediate products during the thermal processing of black garlic. Food Chem. 2015;23:56–61. doi: 10.1016/j.foodchem.2017.06.079. [PubMed] [CrossRef] [Google Scholar]
  53. Lei M.-M., Xu M.-Y., Zhang Z.-S., Zhang M., Gao Y.-F. The analysis of saccharide in black garlic and its antioxidant activity. Adv. J. Food Sci. Technol. 2014;6:755–760. doi: 10.19026/ajfst.6.106. [CrossRef] [Google Scholar]
  54. Molina-Calle M., de Medina V., Calderón-Santiago M., Priego-Capote F., de Castro M.D. Untargeted analysis to monitor metabolic changes of garlic along heat treatment by LC-QTOF MS/MS. Electrophoresis. 2017;38:2349–2360. doi: 10.1002/elps.201700062. [PubMed] [CrossRef] [Google Scholar]
  55. Lu X., Li N., Qiao X., Qiu Z. Effects of thermal treatment on polysaccharide degradation during black garlic processing. LWT-Food Sci. Technol. 2018;95:223–229. doi: 10.1016/j.lwt.2018.04.059. [CrossRef] [Google Scholar]
  56. Qiu Z., Lu X., Li N., Zhang M., Qiao X. Characterization of garlic endophytes isolated from the black garlic processing. Microbiologyopen. 2018;7:1–11. doi: 10.1002/mbo3.547. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  57. Kamanna V.S., Chandrasekhara N. Fatty acid composition of garlic (Allium sativum Linnaeus) lipids. J. Am. Oil Chem. Soc. 1980;57:175–176. doi: 10.1007/BF02883781. [CrossRef] [Google Scholar]
  58. Lu X. Doctoral Thesis.Shandong Agriculture University; Taian, China: 2017. Study on Formation Mechanism and Function of Black Garlic Oligosaccharides. [Google Scholar]
  59. Zamora R., Hidalgo F.J. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 2005;45:49–59. doi: 10.1080/10408690590900117. [PubMed] [CrossRef] [Google Scholar]
  60. Lee J., Harnly J.M. Free amino acid and cysteine sulfoxide composition of 11 garlic (Allium sativumL.) cultivars by gas chromatography with flame ionization and mass selective detection. J. Agric. Food Chem. 2005;53:9100–9104. doi: 10.1021/jf051228e. [PubMed] [CrossRef] [Google Scholar]
  61. Hwang I.G., Kim H.Y., Woo K.S., Lee J., Jeong H.S. Biological activities of Maillard reaction products (MRPs) in a sugar-amino acid model system. Food Chem. 2011;126:221–227. doi: 10.1016/j.foodchem.2010.10.103. [CrossRef] [Google Scholar]
  62. Qiu Z., Zheng Z., Zhang B., Sun-Waterhouse D., Qiao X. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Compr. Rev. Food Sci. Food Saf. 2020;19:801–834. doi: 10.1111/1541-4337.12529. [PubMed] [CrossRef] [Google Scholar]
  63. Sato E., Kohno M., Hamano H., Niwano Y. Increased anti-oxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum. Nutr. 2006;61:157–160. doi: 10.1007/s11130-006-0017-5. [PubMed] [CrossRef] [Google Scholar]
  64. Kodera Y., Suzuki A., Imada O., Kasuga S., Sumioka I., Kanezawa A., Taru N., Fujikawa M., Nagae S., Masamoto K. Physical, chemical, and biological properties of S-allylcysteine, an amino acid derived from garlic. J. Agric. Food Chem. 2002;50:622–632. doi: 10.1021/jf0106648. [PubMed] [CrossRef] [Google Scholar]
  65. Li N., Lu X., Pei H., Qiao X. Effect of freezing pretreatment on the processing time and quality of black garlic. J. Food Process Eng. 2015;38:329–335. doi: 10.1111/jfpe.12156. [CrossRef] [Google Scholar]
  66. Ritota M., Casciani L., Han B.Z., Cozzolino S., Leita L., Sequi P., Valentini M. Traceability of Italian garlic (Allium sativumL.) by means of HRMAS-NMR spectroscopy and multivariate data analysis. Food Chem. 2012;135:684–693. doi: 10.1016/j.foodchem.2012.05.032. [PubMed] [CrossRef] [Google Scholar]
  67. Blecker C., Fougnies C., van Herck J.-C., Chevalier J.-P., Paquot M. Kinetic study of the acid hydrolysis of various oligofructose samples. J. Agric. Food Chem. 2002;50:1602–1607. doi: 10.1021/jf010905b. [PubMed] [CrossRef] [Google Scholar]
  68. Rahman M.S. Handbook of Food Preservation.CRC Press; Boca Raton, FL, USA: 2007. [Google Scholar]
  69. Limacher A., Kerler J., Davidek T., Schmalzried F., Blank I. Formation of furan and methylfuran by Maillard-type reactions in model systems and food. J. Agric. Food Chem. 2008;56:3639–3647. doi: 10.1021/jf800268t. [PubMed] [CrossRef] [Google Scholar]
  70. Kim J.-S., Kang O.-J., Gweon O.-C. Changes in the content of fat-and water-soluble vitamins in black garlic at the different thermal processing steps. Food Sci. Biotechnol. 2013;22:283–287. doi: 10.1007/s10068-013-0039-3. [CrossRef] [Google Scholar]
  71. Rayman M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008;100:254–268. doi: 10.1017/S0007114508939830. [PubMed] [CrossRef] [Google Scholar]
  72. Houston M.C., Harper K.J. Potassium, magnesium, and calcium: Their role in both the cause and treatment of hypertension. J. Clin. Hypertens. 2008;10:3–11. doi: 10.1111/j.1751-7176.2008.08575.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  73. Kang O.-J. Physicochemical characteristics of black garlic after different thermal processing steps. Prev. Nutr. Food Sci. 2016;21:348–354. doi: 10.3746/pnf.2016.21.4.348. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  74. Shinkawa H., Takemura S., Minamiyama Y., Kodai S., Tsukioka T., Osada-Oka M., Kubo S., Okada S., Suehiro S. S-allylcysteine is effective as a chemopreventive agent against porcine serum-induced hepatic fibrosis in rats. Osaka City Med. J. 2009;55:61–69. [PubMed] [Google Scholar]
  75. Yang P., Song H., Wang L., Jing H. Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. J. Agric. Food Chem. 2019;67:7926–7934. doi: 10.1021/acs.jafc.9b03269. [PubMed] [CrossRef] [Google Scholar]
  76. Kang O.-J. Evaluation of melanoidins formed from black garlic after different thermal processing steps. Prev. Nutr. Food Sci. 2016;21:398. doi: 10.3746/pnf.2016.21.4.398. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  77. Rios-Rios K.L., Montilla A., Olano A., Villamiel M. Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci. Technol. 2019;88:459–467. doi: 10.1016/j.tifs.2019.04.016. [CrossRef] [Google Scholar]
  78. Huang M.L., Jiang N.T., Jiang X.M. Colour, Taste, and Odor Chemistry of Food.China Light Industry Press; Beijing, China: 1984. [Google Scholar]
  79. Xiaoming L., Li N., Qiao X., Qiu Z., Liu P. Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 2016;10:340–349. [PubMed] [Google Scholar]
  80. Kim I.-D., Park Y.-S., Park J.-J., Dhungana S.K., Shin D.-H. Physicochemical and antioxidant properties of garlic (A. sativum) prepared by different heat treatment conditions. Korean J. Food Sci. Technol. 2019;51:452–458. [Google Scholar]
  81. Liu J., Zhang G., Cong X., Wen C. Black garlic improves heart function in patients with coronary heart disease by improving circulating antioxidant levels. Front. Physiol. 2018;9:1435–1445. doi: 10.3389/fphys.2018.01435. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  82. Kim J.-S., Kang O.-J., Gweon O.-C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J. Funct. Foods. 2013;5:80–86. doi: 10.1016/j.jff.2012.08.006. [CrossRef] [Google Scholar]
  83. Setiyoningrum F., Priadi G., Afiati F., Herlina N., Solikhin A. Composition of spontaneous black garlic fermentation in a water bath. Food Sci. Technol. 2021 doi: 10.1590/fst.28720. [CrossRef] [Google Scholar]
  84. Shin J.-H., Choi D.-J., Lee S.-J., Cha J.-Y., Sung N.-J. Antioxidant activity of black garlic (Allium sativumL.) J. Korean Soc. Food Sci. Nutr. 2008;37:965–971. doi: 10.3746/jkfn.2008.37.8.965. [CrossRef] [Google Scholar]
  85. Kim M.-S., Kim M.-J., Bang W.-S., Kim K.-S., Park S.-S. Determination of s-allyl-l-cystein, diallyl disulfide, and total amino acids of black garlic after spontaneous short-term fermentation. J. Korean Soc. Food Sci. Nutr. 2012;41:661–665. doi: 10.3746/jkfn.2012.41.5.661. [CrossRef] [Google Scholar]
  86. Al-Shehri S.A. Efficacy of black garlic extract on anti-tumor and anti-oxidant activity enhancement in rats. Clin. Nutr. Open Sci. 2021;36:126–139. doi: 10.1016/j.nutos.2021.03.005. [CrossRef] [Google Scholar]
  87. Park S.H., Lee H., Kim H.S., Kim Y.-R., Noh S.H. Optimum conditions for S-allyl-(L)-cysteine accumulation in aged garlic by RSM. Food Sci. Biotechnol. 2014;23:717–722. doi: 10.1007/s10068-014-0097-1. [CrossRef] [Google Scholar]
  88. Thao H.P., Tuan N.D., Zemann A. Quantitative analysis of S-Allylcysteine in black garlic via Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Syst. Rev. Pharm. 2019;10:161–166. [Google Scholar]
  89. Kim J.H., Yu S.H., Cho Y.J., Pan J.H., Cho H.T., Kim J.H., Bong H., Lee Y., Chang M.H., Jeong Y.J. Preparation of S-allylcysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-induced insulin-deficient mice. J. Agric. Food Chem. 2017;65:358–363. doi: 10.1021/acs.jafc.6b04948. [PubMed] [CrossRef] [Google Scholar]
  90. Sasaki J.I., Lu C., Machiya E., Tanahashi M., Hamada K. Processed black garlic (Allium sativum) extracts enhance anti-tumor potency against mouse tumors. Energy. 2007;227:278–281. [Google Scholar]
  91. Sato E., Kohno M., Niwano Y. Increased level of tetrahydro-β-carboline derivatives in short-term fermented garlic. Plant Foods Hum. Nutr. 2006;61:175–178. doi: 10.1007/s11130-006-0028-2. [PubMed] [CrossRef] [Google Scholar]
  92. Zhang Z., Lei M., Liu R., Gao Y., Xu M., Zhang M. Evaluation of alliin, saccharide contents and antioxidant activities of black garlic during thermal processing. J. Food Biochem. 2015;39:39–47. doi: 10.1111/jfbc.12102. [CrossRef] [Google Scholar]
  93. Chen Z., Xu M., Wang C., Zhou H., Fan L., Huang X. Thermolysis kinetics and thermal degradation compounds of alliin. Food Chem. 2017;223:25–30. doi: 10.1016/j.foodchem.2016.12.011. [PubMed] [CrossRef] [Google Scholar]
  94. Xu X., Miao Y., Chen J.Y., Zhang Q., Wang J. Effective production of S-allyl-L-cysteine through a homogeneous reaction with activated endogenous -γ-glutamyltranspeptidase in garlic (Allium Sativum) J. Food Sci. Technol. 2015;52:1724–1729. doi: 10.1007/s13197-013-1138-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  95. Alberti K.G.M.M., Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998;15:539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S. [PubMed] [CrossRef] [Google Scholar]
  96. Thomson M., Al-Qattan K.K., Divya J.S., Ali M. Anti-diabetic and anti-oxidant potential of aged garlic extract (AGE) in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 2015;16:1–9. [PMC free article] [PubMed] [Google Scholar]
  97. Thomson M., Al-Qattan K., Jayasree D., Ali M. Oral intake of aged garlic extract (AGE) ameliorates oxidative stress and other streptozotocin-induced diabetic complications in rats. Int. J. Pharmacol. 2017;13:593–602. doi: 10.3923/ijp.2017.593.602. [CrossRef] [Google Scholar]
  98. Kang M.-J., Lee S.J., Sung N.J., Shin J.-H. The effect of extract powder from fresh and black garlic on main components in serum and organs of streptozotocin-induced diabetic rats. J. Life Sci. 2013;23:432–442. doi: 10.5352/JLS.2013.23.3.432. [CrossRef] [Google Scholar]
  99. Lee Y.M., Gweon O.C., Seo Y.J., Im J., Kang M.J., Kim M.J., Kim J.I. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr. Res. Pract. 2009;3:156. doi: 10.4162/nrp.2009.3.2.156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  100. Si L., Lin R., Jia Y., Jian W., Yu Q., Wang M., Yang S. Lactobacillus bulgaricus improves antioxidant capacity of black garlic in the prevention of gestational diabetes mellitus: A randomized control trial. Biosci. Rep. 2019;39:BSR2018225. doi: 10.1042/BSR20182254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  101. Lee H.-M., Seo D.-Y., Lee S.-H., Baek Y.-H. Effects of exhaustive exercise and aged garlic extract supplementation on weight, adipose tissue mass, lipid profiles and oxidative stress in high fat diet induced obese rats. J. Life Sci. 2010;20:1889–1895. doi: 10.5352/JLS.2010.20.12.1889. [CrossRef] [Google Scholar]
  102. Lee H.-S., Lim W.-C., Lee S.-J., Lee S.-H., Lee J.-H., Cho H.-Y. Antiobesity effect of garlic extract fermented by Lactobacillus plantarum BL2 in diet-induced obese mice. J. Med. Food. 2016;19:823–829. doi: 10.1089/jmf.2016.3674. [PubMed] [CrossRef] [Google Scholar]
  103. Seo D.Y., Lee S., Figueroa A., Kwak Y.S., Kim N., Rhee B.D., Ko K.S., Bang H.S., Beak Y.H., Han J. Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats. Nutr. Res. Pract. 2016;6:513. doi: 10.4162/nrp.2012.6.6.513. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  104. Xu C., Mathews A.E., Rodrigues C., Eudy B.J., Rowe C.A., O’Donoughue A., Percival S.S. Aged garlic extract supplementation modifies inflammation and immunity of adults with obesity: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. ESPEN. 2019;24:148–155. doi: 10.1016/j.clnesp.2017.11.010. [PubMed] [CrossRef] [Google Scholar]
  105. Chen Y.-C., Kao T.-H., Tseng C.-Y., Chang W.-T., Hsu C.-L. Methanolic extract of black garlic ameliorates diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis. J. Funct. Foods. 2014;9:98–108. doi: 10.1016/j.jff.2014.02.019. [CrossRef] [Google Scholar]
  106. Nam H., Jung H., Kim Y., Kim B., Kim K.H., Park S.J., Suh J.G. Aged black garlic extract regulates lipid metabolism by inhibiting lipogenesis and promoting lipolysis in mature 3T3-L1 adipocytes. Food Sci. Biotechnol. 2018;27:575–579. doi: 10.1007/s10068-017-0268-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  107. Ahmad M.S., Pischetsrieder M., Ahmed N. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts. Eur. J. Pharmacol. 2007;561:32–38. doi: 10.1016/j.ejphar.2007.01.041. [PubMed] [CrossRef] [Google Scholar]
  108. Maldonado P.D., Barrera D., Medina-Campos O.N., Hernández-Pando R., Ibarra-Rubio M.E., Pedraza-Chaverri J. Aged garlic extract attenuates gentamicin induced renal damage and oxidative stress in rats. Life Sci. 2003;73:2543–2556. doi: 10.1016/S0024-3205(03)00609-X. [PubMed] [CrossRef] [Google Scholar]
  109. Shiju T.M., Rajesh N.G., Viswanathan P. Renoprotective effect of aged garlic extract in streptozotocin-induced diabetic rats. Indian J. Pharmacol. 2013;45:18. doi: 10.4103/0253-7613.106429. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  110. Albrakati A. Aged garlic extract rescues ethephon-induced kidney damage by modulating oxidative stress, apoptosis, inflammation, and histopathological changes in rats. Environ. Sci. Pollut. Res. 2021;28:6818–6829. doi: 10.1007/s11356-020-10997-5. [PubMed] [CrossRef] [Google Scholar]
  111. Lee T.W., Bae E., Kim J.H., Jang H.N., Cho H.S., Chang S.H., Park D.J. The aqueous extract of aged black garlic ameliorates colistin-induced acute kidney injury in rats. Ren. Fail. 2019;41:24–33. doi: 10.1080/0886022X.2018.1561375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  112. Ansari A.G., Shaikh A.A., Memon Z.A. Hepatoprotective Effect of Black Garlic Extract against Carbon Tetrachloride Induced Liver Injury in Rats. J. Peoples Univ. Med. Health Sci. 2014;4:86–91. [Google Scholar]
  113. Kim M.H., Kim M.J., Lee J.H., Han J.I., Kim J.H., Sok D.E., Kim M.R. Hepatoprotective effect of aged black garlic on chronic alcohol-induced liver injury in rats. J. Med. Food. 2011;14:732–738. doi: 10.1089/jmf.2010.1454. [PubMed] [CrossRef] [Google Scholar]
  114. Jiang G., Ramachandraiah K., Murtaza M.A., Wang L., Li S., Ameer K. Synergistic effects of black ginseng and aged garlic extracts for the amelioration of nonalcoholic fatty liver disease (NAFLD) in mice. Food Sci. Nutr. 2021;9:3091–3099. doi: 10.1002/fsn3.2267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  115. Lee H.S., Lim W.C., Lee S.J., Lee S.H., Yu H.J., Lee J.H., Cho H.Y. Hepatoprotective effects of lactic acid-fermented garlic extract against acetaminophen-induced acute liver injury in rats. Food Sci. Biotechnol. 2016;25:867–873. doi: 10.1007/s10068-016-0143-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  116. Park C., Gweon O.-C., Choi Y.H., Kim J.-I. Aged black garlic inhibits cyclooxygenase-2 expression and prostaglandin E2 production by phorbol 12-myristate-13-acetate through inactivation of nuclear factor-kappab. Cancer Prev. Res. 2009;14:161–170. [Google Scholar]
  117. Kim H.K., Choi Y.W., Lee E.N., Park J.K., Kim S.G., Park D.J., Kim B.S., Lim Y.T., Yoon S. 5-Hydroxymethylfurfural from black garlic extract prevents TNFα-induced monocytic cell adhesion to HUVECs by suppression of vascular cell adhesion molecule-1 expression, reactive oxygen species generation and NF-κB activation. Phyther. Res. 2011;25:965–974. doi: 10.1002/ptr.3351. [PubMed] [CrossRef] [Google Scholar]
  118. Kong F., Lee B.H., Wei K. 5-hydroxymethylfurfural mitigates lipopolysaccharide-stimulated inflammation via suppression of MAPK, NF-κB and mTOR activation in RAW 264.7 cells. Molecules. 2019;24:275. doi: 10.3390/molecules24020275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  119. Kim K.H., Park J.K., Choi Y.W., Kim Y.H., Lee E.N., Lee J.R., Kim H.S., Baek S.Y., Kim B.S., Lee K.S. Hexane extract of aged black garlic reduces cell proliferation and attenuates the expression of ICAM-1 and VCAM-1 in TNF–α–activated human endometrial stromal cells. Int. J. Mol. Med. 2013;32:67–78. doi: 10.3892/ijmm.2013.1362. [PubMed] [CrossRef] [Google Scholar]
  120. Kim M.J., Yoo Y.C., Kim H.J., Shin S.K., Sohn E.J., Min A.Y., Sung N.Y., Kim M.R. Aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice. J. Med. Food. 2014;17:1057–1063. doi: 10.1089/jmf.2013.3043. [PubMed] [CrossRef] [Google Scholar]
  121. Chen Y.-A., Tsai J.-C., Cheng K.-C., Liu K.-F., Chang C.-K., Hsieh C.-W. Extracts of black garlic exhibits gastrointestinal motility effect. Food Res. Int. 2018;107:102–109. doi: 10.1016/j.foodres.2018.02.003. [PubMed] [CrossRef] [Google Scholar]
  122. Li X., Liu R., Zhang M. Laxative effects of mixed black garlic beverage on BALB/c mice. China Food Addit. 2014;6:49–53. [Google Scholar]
  123. Kim K.J., Kim S.H., Shin M.-R., Kim Y.J., Park H.-J., Roh S.-S. Protective effect of S-allyl cysteine-enriched black garlic on reflux esophagitis in rats via NF-kB signaling pathway. J. Funct. Foods. 2019;58:199–206. doi: 10.1016/j.jff.2019.04.040. [CrossRef] [Google Scholar]
  124. El-Ashmawy N.E., Khedr E.G., El-Bahrawy H.A., Selim H.M. Gastroprotective effect of garlic in indomethacin induced gastric ulcer in rats. Nutrition. 2016;32:849–854. doi: 10.1016/j.nut.2016.01.010. [PubMed] [CrossRef] [Google Scholar]
  125. Badr G.M., Al-Mulhim J.A. The protective effect of aged garlic extract on nonsteroidal anti-inflammatory drug-induced gastric inflammations in male albino rats. Evidence-Based Complement. Altern. Med. 2014 doi: 10.1155/2014/759642. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  126. Yüncü M., Eralp A., Celõk A. Effect of aged garlic extract against methotrexate-induced damage to the small intestine in rats. Phyther. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006;20:504–510. doi: 10.1002/ptr.1896. [PubMed] [CrossRef] [Google Scholar]
  127. Blann A.D. Platelets: The universal killer? Biochim. Biophys. Acta BBA Mol. Basis Dis. 2007;1772:715–717. doi: 10.1016/j.bbadis.2007.03.001. [PubMed] [CrossRef] [Google Scholar]
  128. Banerjee S.K., Maulik S.K. Effect of garlic on cardiovascular disorders: A review. Nutr. J. 2002;1:1–14. doi: 10.1186/1475-2891-1-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  129. Morihara N., Hino A. Aged garlic extract suppresses platelet aggregation by changing the functional property of platelets. J. Nat. Med. 2017;71:249–256. doi: 10.1007/s11418-016-1055-4. [PubMed] [CrossRef] [Google Scholar]
  130. Kim H.-K. The Inhibiton Effects of Hypercholesterolemia and Platelet in Fermented and Non-Fermented Preparation of Garlic. Int. J. Internet Broadcast. Commun. 2019;11:1–10. [Google Scholar]
  131. Irfan M., Kim M., Kim K.S., Kim T.H., Kim S.D., Hong S.B., Kim H.K., Rhee M.H. Fermented garlic ameliorates hypercholesterolemia and inhibits platelet activation. Evidence-Based Complement. Altern. Med. 2019 doi: 10.1155/2019/3030967. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  132. Seo D.Y., Lee S.R., Kim H.K., Baek Y.H., Kwak Y.S., Ko T.H., Kim N., Rhee B.D., Ko K.S., Park B.J., et al. Independent beneficial effects of aged garlic extract intake with regular exercise on cardiovascular risk in postmenopausal women. Nutr. Res. Pract. 2012;6:226. doi: 10.4162/nrp.2012.6.3.226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  133. Jung E.S., Park S.H., Choi E.K., Ryu B.H., Park B.H., Kim D.S., Kim Y.G., Chae S.W. Reduction of blood lipid parameters by a 12-wk supplementation of aged black garlic: A randomized controlled trial. Nutrition. 2014;30:1034–1039. doi: 10.1016/j.nut.2014.02.014. [PubMed] [CrossRef] [Google Scholar]
  134. Steiner M., Li W. Aged garlic extract, a modulator of cardiovascular risk factors: A dose-finding study on the effects of AGE on platelet functions. J. Nutr. 2001;131:980S–984S. doi: 10.1093/jn/131.3.980S. [PubMed] [CrossRef] [Google Scholar]
  135. Rahman K., Billington D. Dietary supplementation with aged garlic extract inhibits ADP-induced platelet aggregation in humans. J. Nutr. 2000;130:2662–2665. doi: 10.1093/jn/130.11.2662. [PubMed] [CrossRef] [Google Scholar]
  136. Gómez-Arbeláez D., Lahera V., Oubiña P., Valero-Muñoz M., Heras N.D.L., Rodríguez Y., García R.G., Camacho P.A., López-Jaramillo P. Aged garlic extract improves adiponectin levels in subjects with metabolic syndrome: A double-blind, placebo-controlled, randomized, crossover study. Mediat. Inflamm. 2013 doi: 10.1155/2013/285795. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  137. Wlosinska M., Nilsson A.-C., Hlebowicz J., Fakhro M., Malmsjö M., Lindstedt S. Aged garlic extract reduces IL-6: A double-blind placebo-controlled trial in females with a low risk of cardiovascular disease. Evidence-Based Complement. Altern. Med. 2021 doi: 10.1155/2021/6636875. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  138. O’Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension. 1990;15:339–347. doi: 10.1161/01.HYP.15.4.339. [PubMed] [CrossRef] [Google Scholar]
  139. Te Riet L., van Esch J.H.M., Roks A.J.M., van den Meiracker A.H., Danser A.H.J. Hypertension: Renin-angiotensin-aldosterone system alterations. Circ. Res. 2015;116:960–975. doi: 10.1161/CIRCRESAHA.116.303587. [PubMed] [CrossRef] [Google Scholar]
  140. Ried K., Travica N., Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integr. Blood Press. Control. 2019;9:9. doi: 10.2147/IBPC.S93335. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  141. Ried K., Travica N., Sali A. The effect of Kyolic aged garlic extract on gut microbiota, inflammation, and cardiovascular markers in hypertensives: The GarGIC Trial. Front. Nutr. 2018;7:122. doi: 10.3389/fnut.2018.00122. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  142. Ried K., Frank O.R., Stocks N.P. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: A randomised controlled trial. Maturitas. 2010;67:144–150. doi: 10.1016/j.maturitas.2010.06.001. [PubMed] [CrossRef] [Google Scholar]
  143. Castro C., Lorenzo A.G., González A., Cruzado M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: Involvement of cell-cycle inhibitor p27Kip1 and mitogen-activated protein kinase. Mol. Nutr. Food Res. 2010;54:781–787. doi: 10.1002/mnfr.200900108. [PubMed] [CrossRef] [Google Scholar]
  144. Yu J., Shan Y., Li S., Zhang L. Potential contribution of Amadori compounds to antioxidant and angiotensin I converting enzyme inhibitory activities of raw and black garlic. LWT-Food Sci. Technol. 2020;129:109553. doi: 10.1016/j.lwt.2020.109553. [CrossRef] [Google Scholar]
  145. Jang E.-K., Seo J.-H., Lee S.-P. Physiological activity and antioxidative effects of aged black garlic (Allium sativumL.) extract. Korean J. Food Sci. Technol. 2008;40:443–448. [Google Scholar]
  146. Han Y., Fan Z.D., Yuan N., Xie G.Q., Gao J., De W., Gao X.Y., Zhu G.Q. Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. J. Appl. Physiol. 2011;110:646–652. doi: 10.1152/japplphysiol.00908.2010. [PubMed] [CrossRef] [Google Scholar]
  147. Miao Y., Chen J., Zhou G., Xu X., Zhang Q., Wang J. The antihypertensive effect of black garlic (Allium sativum) in spontaneously hypertensive rats via Scavenging of free radicals. Res. Health Nutr. 2014;2:5–12. [Google Scholar]
  148. Peters E.B., Kibbe M.R. Nanomaterials to Resolve Atherosclerosis. ACS Biomater. Sci. Eng. 2020;6:3693–3712. doi: 10.1021/acsbiomaterials.0c00281. [PubMed] [CrossRef] [Google Scholar]
  149. Morihara N., Hino A., Yamaguchi T., Suzuki J. Aged Garlic Extract Suppresses the Development of Atherosclerosis in Apolipoprotein E-Knockout Mice. J. Nutr. 2016;146:460S–463S. doi: 10.3945/jn.114.206953. [PubMed] [CrossRef] [Google Scholar]
  150. Efendy J.L., Simmons D.L., Campbell G.R., Campbell J.H. The effect of the aged garlic extract, Kyolic’, on the development of experimental atherosclerosis. Atherosclerosis. 1997;132:37–42. doi: 10.1016/S0021-9150(97)00078-6. [PubMed] [CrossRef] [Google Scholar]
  151. Wlosinska M., Nilsson A.C., Hlebowicz J., Hauggaard A., Kjellin M., Fakhro M., Lindstedt S. The effect of aged garlic extract on the atherosclerotic process—A randomized double-blind placebo-controlled trial. BMC Complement. Med. Ther. 2020;20:1–10. [PMC free article] [PubMed] [Google Scholar]
  152. Zeb I., Ahmadi N., Kadakia J., Larijani V.N., Flores F., Li D., Budoff M.J., Nasir K. Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: A randomized clinical trial. J. Cardiovasc. Dis. Res. 2012;3:185–190. doi: 10.4103/0975-3583.98883. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  153. Budoff M.J., Ahmadi N., Gul K.M., Liu S.T., Flores F.R., Tiano J., Takasu J., Miller E., Tsimikas S. Aged garlic extract supplemented with B vitamins, folic acid and L-arginine retards the progression of subclinical atherosclerosis: A randomized clinical trial. Prev. Med. 2009;49:101–107. doi: 10.1016/j.ypmed.2009.06.018. [PubMed] [CrossRef] [Google Scholar]
  154. Zeb I., Ahmadi N., Flores F., Budoff M.J. Randomized trial evaluating the effect of aged garlic extract with supplements versus placebo on adipose tissue surrogates for coronary atherosclerosis progression. Coron. Artery Dis. 2018;29:325–328. doi: 10.1097/MCA.0000000000000587. [PubMed] [CrossRef] [Google Scholar]
  155. Ried K., Frank O.R., Stocks N.P. Aged garlic extract reduces blood pressure in hypertensives: A dose-response trial. Eur. J. Clin. Nutr. 2013;67:64–70. doi: 10.1038/ejcn.2012.178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  156. Chauhan N.B. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J. Ethnopharmacol. 2006;108:385–394. doi: 10.1016/j.jep.2006.05.030. [PubMed] [CrossRef] [Google Scholar]
  157. Jeong J.H., Jeong H.R., Jo Y.N., Kim H.J., Shin J.H., Heo H.J. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment. BMC Complement. Altern. Med. 2013;13:1–11. [PMC free article] [PubMed] [Google Scholar]
  158. Wichai T., Pannangrong W., Welbat J., Chaichun A., Sripanidkulchai K., Sripanidkulchai B. Effects of aged garlic extract on spatial memory and oxidative damage in the brain of amyloid-βinduced rats. Songklanakarin J. Sci. Technol. 2019;41:311–318. [Google Scholar]
  159. Thorajak P., Pannangrong W., Welbat J.U., Chaijaroonkhanarak W., Sripanidkulchai K., Sripanidkulchai B. Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with regard to cognitive impairment in Aβ-induced rats. Nutrients. 2017;9:686. doi: 10.3390/nu9070686. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  160. Ray B., Chauhan N.B., Lahiri D.K. Oxidative insults to neurons and synapse are prevented by aged garlic extract and S-allyl-l-cysteine treatment in the neuronal culture and APP-Tg mouse model. J. Neurochem. 2011;117:388–402. doi: 10.1111/j.1471-4159.2010.07145.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  161. Zhou H., Qu Z., Mossine V.V., Nknolise D.L., Li J., Chen Z., Cheng J., Greenlief C.M., Mawhinney T.P., Brown P.N., et al. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS ONE. 2014;9:e113531. doi: 10.1371/journal.pone.0113531. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  162. Rojas P., Serrano-Garcia N., Medina-Campos O.N., Pedraza-Chaverri J., Maldonado P.D., Ruiz-Sánchez E. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice. J. Nutr. Biochem. 2011;22:937–944. doi: 10.1016/j.jnutbio.2010.08.005. [PubMed] [CrossRef] [Google Scholar]
  163. Ashafaq M., Khan M.M., Raza S., Ahmad A., Khuwaja G., Javed H., Khan A., Islam F., Siddiqui M.S., Safhi M.M., et al. S-allyl cysteine mitigates oxidative damage and improves neurologic deficit in a rat model of focal cerebral ischemia. Nutr. Res. 2010;32:133–143. doi: 10.1016/j.nutres.2011.12.014. [PubMed] [CrossRef] [Google Scholar]
  164. Cervantes M.I., Balderas P.M.D.O., Gutiérrez-Baños J.D.J., Orozco-Ibarra M., Rojas B.F., Medina-Campos O.N., Espinoza-Rojo M., Ruiz-Tachiquín M., Ortiz-Plata A., Salazar M.I., et al. Comparison of antioxidant activity of hydroethanolic fresh and aged garlic extracts and their effects on cerebral ischemia. Food Chem. 2013;140:343–352. doi: 10.1016/j.foodchem.2013.02.053. [PubMed] [CrossRef] [Google Scholar]
  165. Atif F., Yousuf S., Agrawal S.K. S-Allyl L-cysteine diminishes cerebral ischemia-induced mitochondrial dysfunctions in hippocampus. Brain Res. 2009;1265:128–137. doi: 10.1016/j.brainres.2008.12.077. [PubMed] [CrossRef] [Google Scholar]
  166. Colin-González A.L., Ortiz-Plata A., Villeda-Hernández J., Barrera D., Molina-Jijón E., Pedraza-Chaverrí J., Maldonado P.D. Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats. Plant Foods Hum. Nutr. 2011;66:348–354. doi: 10.1007/s11130-011-0251-3. [PubMed] [CrossRef] [Google Scholar]
  167. Gomez C.D., Aguilera P., Ortiz Plata A., Nares López F., Chanez Cardenas M.E., Flores Alfaro E., Ruiz-Tachiquín M.E., Espinoza-Rojo M. Aged garlic extract and S-allylcysteine increase the GLUT3 and GCLC expression levels in cerebral ischemia. Adv. Clin. Med. Exp. 2019;28:1609–1614. doi: 10.17219/acem/110328. [PubMed] [CrossRef] [Google Scholar]
  168. Liu Y., Yan J., Han X., Hu W. Garlic-derived compound S-allylmercaptocysteine (SAMC) is active against anaplastic thyroid cancer cell line 8305C (HPACC) Technol. Health Care. 2015;23:S89–S93. doi: 10.3233/thc-150936. [PubMed] [CrossRef] [Google Scholar]
  169. Yang G.Q., Wang D., Wang Y.S., Wang Y.Y., Yang K. Radiosensitization effect of black garlic extract on lung cancer cell line Lewis cells. [Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi.] Chin. J. Integr. Tradit. West. Med. 2013;33:1093–1097. [PubMed] [Google Scholar]
  170. Jikihara H., Qi G., Nozoe K., Hirokawa M., Sato H., Sugihara Y., Shimamoto F. Aged garlic extract inhibits 1, 2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation. Oncol. Rep. 2015;33:1131–1140. doi: 10.3892/or.2014.3705. [PubMed] [CrossRef] [Google Scholar]
  171. Shin D.Y., Yoon M.K., Choi Y.W., Gweon O.C., Kim J.I., Choi T.H., Choi Y.H. Effects of aged black garlic extracts on the tight junction permeability and cell invasion in human gastric cancer cells. J. Life Sci. 2010;20:528–534. doi: 10.5352/JLS.2010.20.4.528. [CrossRef] [Google Scholar]
  172. Alkreathy H.M., AlShehri N.F., Kamel F.O., Alghamdi A.K., Esmat A., Karim S. Aged garlic extract potentiates doxorubicin cytotoxicity in human breast cancer cells. Trop. J. Pharm. Res. 2020;19:1669–1676. doi: 10.4314/tjpr.v19i8.15. [CrossRef] [Google Scholar]
  173. Sigounas G., Hooker J., Anagnostou A., Steiner M. S-allylmercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines. Nutr. Cancer. 1997;27:186–191. doi: 10.1080/01635589709514523. [PubMed] [CrossRef] [Google Scholar]
  174. Chu Q., Ling M.T., Feng H., Cheung H.W., Tsao S.W., Wang X., Wong Y.C. A novel anticancer effect of garlic derivatives: Inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis. 2006;27:2180–2189. doi: 10.1093/carcin/bgl054. [PubMed] [CrossRef] [Google Scholar]
  175. Pinto J.T., Qiao C., Xing J., Rivlin R.S., Protomastro M.L., Weissler M.L., Tao Y., Thaler H., Heston W.D. Effects of garlic thioallyl derivatives on growth, glutathione concentration, and polyamine formation of human prostate carcinoma cells in culture. Am. J. Clin. Nutr. 1997;66:398–405. doi: 10.1093/ajcn/66.2.398. [PubMed] [CrossRef] [Google Scholar]
  176. Pinto J.T., Qiao C., Xing J., Suffoletto B.P., Schubert K.B., Rivlin R.S., Huryk R.F., Bacich D.J., Heston W.D. Alterations of prostate biomarker expression and testosterone utilization in human LNCaP prostatic carcinoma cells by garlic-derived S-allylmercaptocysteine. Prostate. 2020;45:304–314. doi: 10.1002/1097-0045(20001201)45:4<304::AID-PROS4>3.0.CO;2-9. [PubMed] [CrossRef] [Google Scholar]
  177. Howard E.W., Ling M.-T., Chua C.W., Cheung H.W., Wang X., Wong Y.C. Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer. Clin. Cancer Res. 2007;13:1847–1856. doi: 10.1158/1078-0432.CCR-06-2074. [PubMed] [CrossRef] [Google Scholar]
  178. Howard E.W., Lee D.T., Chiu Y.T., Chua C.W., Wang X., Wong Y.C. Evidence of a novel docetaxel sensitizer, garlic-derived S-allylmercaptocysteine, as a treatment option for hormone refractory prostate cancer. Int. J. Cancer. 2008;122:1941–1948. doi: 10.1002/ijc.23355. [PubMed] [CrossRef] [Google Scholar]
  179. Tong D., Qu H., Meng X., Jiang Y., Liu D., Ye S., Chen H., Jin Y., Fu S., Geng J. S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-βsignaling pathway in cancer cells. Oncol. Rep. 2014;32:1124–1132. doi: 10.3892/or.2014.3295. [PubMed] [CrossRef] [Google Scholar]
  180. Xu K.X., Hu H., Zhang X.P., Wang Y.L., Chua C.W., Luk S.U., Wong Y.C., Ling M.T., Wang X.F. Identification of a novel function of Id-1 in mediating the anticancer responses of SAMC, a water-soluble garlic derivative, in human bladder cancer cells. Mol. Med. Rep. 2011;4:9–16. doi: 10.3892/mmr.2010.380. [PubMed] [CrossRef] [Google Scholar]
  181. Wu J., Zhao S., Zhang J., Qu X., Jiang S., Zhong Z., Zhang F., Wong Y., Chen H. Over-expression of survivin is a factor responsible for differential responses of ovarian cancer cells to S-allylmercaptocysteine (SAMC) Exp. Mol. Pathol. 2016;100:294–302. doi: 10.1016/j.yexmp.2016.02.003. [PubMed] [CrossRef] [Google Scholar]


Effects of Black Garlic on Cardiovascular System Diseases

Allicin Pharm No Comments

Effects of Black Garlic on Cardiovascular System Diseases

1.Black Garlic and Platelet Aggregation.

The activation of blood platelets plays a vital role in many important physiological and pathological processes, including various arterial phenomena, such as myocardial infarction and strokes.

The platelets bind to the exposed collagen, laminin , and von Willebrand factor in the injured vessel wall, referred to as platelet activation. Adenosine-5-diphosphate (ADP) and thrombin can also process the activation. The activated platelets change their shape, remove pseudopodia, release granules, and adhere to other platelets, thus commencing the platelet aggregation process. Platelet-activating factor, a cytokine released by neutrophils, monocytes, and platelets, also promotes aggregate formation.

Several studies have shown that BG has great potential in inhibiting platelet aggregation.

Products Subjects/Cell Line/Animal Model Outcomes
Aged garlic 30 participants (12 weeks) Reduced cardiovascular risk factors
Aged black garlic 28 participants (12 weeks) Reduced atherogenic markers.
Aged garlic (AG) 34 participants (44 weeks) AG exerted selective inhibition on platelet aggregation and adhesion, platelet functions.
Fermented garlic Male Sprague-Dawley rats Ameliorated, hypercholesterolemia and inhibited platelet activation.
Fermented garlic (FG) Male Sprague-Dawley rats FG significantly inhibited platelet aggregation and granule secretion in hypercholesterolemic rats.


Fermented garlic is also effective in the inhibition of hypercholesterolemia and platelet aggregation. It was observed that the oral administration of fermented garlic (300 mg/kg) in male Sprague-Dawley rats once a day, along with a hypercholesterolemia diet for one month, inhibited collagen and ADP-induced platelet aggregation and ATP release. Besides, fermented garlic treatment downregulated the expression of sterol regulatory element-binding protein, acetyltransferase- 2, and 3-hydroxy-3-methylglutaryl coenzyme A.

Several cl inical trials have been conducted in the recent years to investigate the cardioprotective effects of Black garlic extract. Most of the studies have been found to have positive effects. In a study, Seo et al. showed that a 12 week aged garlic extract regimen with regular exercise reduced cardiovascular risk factors in postmenopausal by decreasing the body weight, body mass index, total cholesterol, LDL-C, malondialdehyde, and homocysteine ​​levels. In another study, Jung et al.  Investigated whether aged black garlic supplementation could improve blood lipid profile in mild hypercholesterolemia patients. They found that aged black garlic supplement increased the high-density lipoprotein cholesterol levels with the ratio of low-density lipoprotein cholesterol/apolipoprotein B with a decrease in the levels of apolipoprotein B.


2.Black Garlic and Arterial Hypertension

Several risk factors are associated with the development of arterial hypertension. Numerous studies showed the potential effects of Black garlic extract on decreasing arterial hypertension and inhibiting ACE.

Ried et al. carried out a clinical trial on 88 patients with uncontrolled arterial hypertension patients. After 12 weeks of study, the findings indicated that aged garlic extract significantly reduced mean blood pressure along with arterial stiffness, mean arterial pressure, central blood pressure, central pulse pressure, pulse wave velocity, and augmentation pressure. Aged garlic extract administration for 12 weeks in 49 participants with uncontrolled arterial hypertension was also found effective in reducing blood pressure and had the potential to improve inflammation, arterial stiffness, and enhanced gut microbial profile.

Similarly, Yu et al. reported that Black Garlic extract was the most active in ACE inhibition with the lowest IC50 value (0.04 mg/mL) compared to raw garlic extract. Having said that, the authors also identified two Amadori compounds in BG extract, specifically N-(1-deoxy-D-fructos-1-yl)-l-arginine and N-(1-deoxy-D-fructos-1-yl)-l-methionine, which were probably attributed to ACE inhibitory activity. It has also been reported by Jang et al. [145], in their study, that ACE inhibitory effects of the BG extract were greater (88.8%) than normal garlic extract (52.7%).

However, there is still not enough data to suggest BG for the treatment of hypertensive patients as a standard clinical therapy. More properly designed and analyzed trials are needed for a definite conclusion.


3.Black Garlic and Atherosclerosis

Atherosclerosis occurs as a result of fat, cholesterol, and other substances interacting within the cellular components of the arterial wall. These deposits are called plaques. Over time, these plaques can eventually narrow or totally block the arteries, causing complications throughout the body.

Numerous pre-clinical and clinical investigations have demonstrated and confirmed Black garlic’s efficacy in preventing and treating atherosclerosis.

In a randomized double-blind placebo-controlled trial, aged garlic extract significantly inhibited CAC progression, lowered the levels of IL-6 glucose, and blood pressure in 104 patients at increased risk of cardiovascular events after taking 2400 mg/daily of aged garlic extract for one year.

Another randomized clinical trial showed that a combination of aged garlic extract and co-enzyme Q10 suppressed the CAC progression and significantly decreased carbon reactive protein levels. In 2009, a placebo-controlled, double-blind, randomized study involved 65 intermediate-risk patients and supplied them a capsule containing aged garlic extract with vitamin B6, vitamin B12, folic acid, and L-arginine for 12 months. At the end of the clinical trial, the data suggested that aged garlic extract with supplements decreased TGs, LDL-C, homocysteine, immunoglobulin G, and immunoglobulin M autoantibodies to malondialdehyde-low density lipoprotein and apolipoprotein B-immune complexes while high-density lipoprotein, oxidized phospholipids/apolipoprotein B and lipoprotein were significantly increased.

Furthermore, a study of 60 asymptomatic patients showed that fermented garlic extract with supplements decreased the levels of epicardial adipose tissue, pericardial adipose tissue, periaortic adipose tissue, and subcutaneous adipose tissue after 12 months of treatment. Thus, aged garlic extract with supplements reduced the metabolic risk and the severity of coronary artery calcification by suppressing the progression rate of adipose tissue volume.




Black Garlic and Its Bioactive Compounds on Human Health Diseases

Allicin Pharm No Comments

Black Garlic and Its Bioactive Compounds on Human Health Diseases


Black Garlic Extract (BGE) and its derivatives have been documented to have multiple biological impacts on health promotion and treatment of various diseases. The transformation of fresh garlic to BG results in modifications in the biological activity of bioactive compounds caused by fermentation. In the past few decades, extensive pre-clinical investigations have shown the therapeutical potential of BG against a wide variety of human diseases. Furthermore, it has been demonstrated that BG interacts directly with a number of signaling molecules. These pre-clinical investigations have established a good foundation for clinical trials investigating BG’s efficacy.


1.Effects of Black Garlic on Metabolic Disorders

1.1Black Garlic and Diabetes

Diabetes mellitus is a heterogeneous form of metabolic disorder characterized by chronic hyperglycemia.

Clinical and experimental studies have demonstrated that chronic hyperglycemia is a major source of oxidative stress and that elevated free radicals play a key role in diabetes mellitus pathogenesis and complications. Several studies have investigated the anti-diabetic potential of black garlic extract and these studies described variable effects of BG on conventional diabetes mellitus markers. For example, aged black garlic extract exhibited ameliorative action on glyco-metabolic biomarkers in streptozotocin-induced diabetic rats by significantly decreasing blood glucose, glycated hemoglobin, and markedly increased serum insulin. Another study examined the anti-diabetic effects of BG powder in male Wister rats and found that BG powder lowered blood glucose, prevented glycogen in the liver, and improved lipid metabolism by increasing the activity of glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and γ-GTP . The results obtained by Si et al. demonstrated that 40 weeks of supplementation of BG lowered the levels of plasma malondialdehyde, SOD, GSH-Px, and total antioxidant capacity in pregnant women. They also mentioned that Lactobacillus bulgaricus improved the antioxidant capacity of BG in the prevention of gestational diabetes mellitus. On the other hand, Kim et al. [89] used SAC-enriched BG juice and treated streptozotocin 239-induced insulin-deficient mice. The authors found that BG juice improved the glutathione antioxidant system, increased leptin, and adiponectin secretion, inhibited hepatic gluconeogenesis, and suppressed nuclear factor-kappa β (NF-κβ)-mediated inflammatory signaling.

Products Subjects/Cell Line/Animal Model Outcomes
Black garlic juice Male C57BL/6J mice SAC-enriched BGJ counteracted STZ239-induced diabetes and β-cell failure in mice.
Aged garlic Male Sprague-Dawley rats Ameliorated oxidative stress and other complications of diabetes.
Aged black garlic C57BL/KsJ-db/db mice ABG improved insulin sensitivity and dyslipidemia in db/db mice.
Black garlic powder Male Wister rats BGP lowered blood glucose, prevented glycogen in the liver, and improved lipid metabolism.
Aged black garlic C57BL/KsL-db/db mice ABG prevented diabetic complications through antioxidant activity.
Aged garlic BSA or lysozyme AG + SAC prevented the formation of advanced glycation end products.
S-allyl cysteine (SAC)
Aged garlic (AG) Sprague-Dawley rats AG exhibited ameliorative action on indicators of diabetes.


1.2. Black Garlic and Obesity

Obesity has become a major public health problem. Obesity-related problems are linked to a variety of metabolic syndrome symptoms including high blood pressure, dyslipidemia, insulin resistance, and glucose intolerance. Various approaches might be employed in human obesity prevention and control. Since a perfect cure or prevention of obesity still remains to be established and the majority of the anti-obesity drugs could have adverse effects, an exploration into the identification of new materials has shown a growing interest. BG extracts have been reported for their activity in reducing body weight, adipose tissue mass, serum triglyceride, total cholesterol, low-density lipoprotein, and plasma malondialdehyde in mice with high-fat-diet-induced obesity.

Moreover, Chen et al. revealed that methanolic extract of Black Garlic ameliorated diet-induced obesity in male Wister rats via upregulate AMP-activated protein kinase, Forkhead box O1, sirtuin 1, adipose triglyceride lipase, hormone-sensitive lipase (HSL), perilipin, acyl-coenzyme A oxidase, carnitine palmitoyl transferase 1, uncoupling protein 1, and downregulated CD36 in the adipose tissue. Aged black garlic extract has also been reported to show anti-lipogenic and lipolytic effects in mature 3T3-L1 adipocytes by reducing protein expression of PPARγ, HSL, and serum-phosphorylated HSL levels.

Products Subjects/Cell Line/Animal Model Outcomes
Black garlic juice Male C57BL/6J mice SAC-enriched BGJ counteracted STZ239-induced diabetes and β-cell failure in mice.
Aged garlic 51 healthy adults with obesity
Study period: 6 weeks
AG prevented the development of chronic diseases associated with low-grade inflammation.
Fermented garlic by lactic acid bacteria (FBLA) Male C57BL/6J mice FBLA ameliorated diet-induced obesity by inhibiting adipose tissue hypertrophy by suppressing adipogenesis.
Aged garlic Male Sprague-Dawley rats Modified the adipose weight and improved the oxidative stress.
Black garlic Male Wister rats Ameliorated diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis.
Aged garlic Sprague Dawley rats Exhibited anti-obesity, cholesterol-lowering, and anti-inflammatory effects.
Aged black garlic Male Sprague-Dawley rats Improved the body weight gain and dyslipidemia through the suppression of body fat and alteration in lipid profiles and antioxidant defense system.
Black garlic (BG) Male Wister rats BG ameliorated obesity induced by a HFD in rats.
Aged black garlic 3T3-L1 preadipocytes Exhibited anti-lipogenic and lipolytic effects.  


2.Effects of Black Garlic on Genitourinary Tract Diseases

BG has also demonstrated an intriguing capacity to alleviate symptoms associated with a variety of genitourinary diseases. Only a few research have examined the role of aged garlic extract in the treatment of kidney disorders, more precisely those caused by glomerular, tubulo-interstitial, or infectious pathologies. Albrakati et al. studied the effect of the aged black extract on chronic kidney disease and found that aged garlic extract rescued ethephon-induced kidney damage through the activation of nuclear factor erythroid 2–related factor 2 and inhibition of inflammation and apoptotic response. Another study performed by Lee et al. on acute kidney injury in rats, showed very promising results when treated with aged black garlic extract. Treatment with aged black garlic extract prevented deterioration of renal function monitored by standardized biomarkers such as the serum levels of creatinine and blood urea nitrogen. Levels of oxidative stress markers such as 8-hydroxydeoxyguanosine, malondialdehyde, NF-κβ, inducible nitric oxide (NO) synthase, cyclooxygenase-2 (COX-2), and transforming growth factor-beta 1 (TGF-β1) were lower in the aged black garlic.


3.Effects of Black Garlic on Liver Diseases

Numerous substances, including dietary components, drugs, alcohols, and pollutants, can cause acute and/or chronic liver diseases, such as liver fibrosis, non-alcoholic liver disease, non-alcoholic steatohepatitis, and even cirrhosis. Black Garlic has been widely investigated for its hepatoprotective properties (Table 5). In Wister rats with CCl4-induced liver injury, the administration of Black garlic extract was found to show a hepatoprotective effect based on the protection against oxidative damage. The levels of SOD, GSH-Px were decreased with an increase in the levels of alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase, and alkaline phosphatase (ALP). In another study, Tsai et al. demonstrated that the administration of SAC and polysaccharides enriched-Black garlic extract into ICR mice inhibited CCl4-induced hepatic injury by inhibiting lipid peroxidation and inflammation

Products Subjects/Cell Line/Animal Model Outcomes
Aged garlic C57BL/6 mice Modulation of glycometabolism, lipometabolism,oxidative stress, and inflammation.
Black garlic (BG) Wister rats BG protected against oxidative damage caused by CCl4 -induced liver injury.
Lactic acid-fermented garlic Wister rats Protected against, oxidative liver injury.
Fermented black garlic C57BL/6J mice Improved the effects on fatty liver.
Black garlic ICR mice Inhibited CCl4-induced hepatic injury by inhibiting lipid peroxidation and inflammation.
Aged black garlic Sprague-Dawley rats Exhibited protective effects against chronic alcohol-induced liver damage.
Aged black garlic Sprague-Dawley rats Showed hepatoprotective effects against liver injury.


4.Effects of Black Garlic on Cardiovascular System Diseases. (click for more information)